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J .  P H Y S .  A ( P R O C .  P H Y S .  S O C . ) ,  1 9 6 8 ,  SER. 2 ,  V O L .  1.  P R I N T E D  I N  G R E A T  B R I T A I N  

Relativistic space-times having corresponding geodesics? 

G. WILLIAMS 
Department of Mathematics, University of Denver, Colorado, U.S.A. 
MS.  received 9th February 1968 

Abstract. Pairs of relativistic space-times are classified according to their Segri: 
characteristics. Suitable bases consisting of pseudo-orthonormal tetrads are con- 
structed and the condition that the spaces should have corresponding geodesics is 
imposed. It is found that the [ 3 ,  11 and [(3, l)] classes contain spaces with corre- 
sponding geodesics. The most general forms of the metrics in these classes are 
derived. Of these metrics, the vacuum ones are shown to be algebraically special, 
in the sense of the Petrov classification. 

1. Introduction 
Let V,  and V,' be two Riemannian n-spaces with fundamental forms gab  and hab. If 

the elementary divisors of g a b  and ha, are all real and simple, as is the case when g,b is 
positive definite, then there exist n mutually orthogonal non-null eigenvectors. However, 
when both spaces are indefinite, null eigenvectors may occur and there is the possibility 
that the elementary divisors are not simple. I n  such cases the eigenvectors do not span 
the spaces. Relativistic space-times are Riemannian 4-spaces and may be spanned by 
eigenvectors and generalized eigenvectors. 

Wong (1945) has developed the theory of quasi-orthogonal ennuples, which had pre- 
viously been introduced by Lense (1932), and applied it to the problem of finding pairs of 
V3 with corresponding geodesics. Bases consisting of eigenvectors and generalized eigen- 
vectors forming quasi-orthonormal tetrad systems (Sachs 1961, Goldberg and Kerr 1961, 
Xewman 1961) are here found to be suitable frameworks for the consideration of the 
problem in four dimensions as well. 

The  correspondence between the geodesics of the relativistic spaces would mean physic- 
ally that motions of free particles would be in correspondence. The  equations of test 
particles in the one space would also be the equations of test particles in the second space. 

Of special interest are empty relativistic space-times having corresponding geodesics. 
Two spaces have corresponding geodesics if, and only if, their projective curvature tensors 
are identical (Eisenhart 1926). In  empty space, since the projective curvature tensor and 
the conformal tensor are identical, the Petrov classification (Jordan et al. 1960) here gives 
a classification of spaces with corresponding geodesics. 

2. Quasi-orthogonal tetrad 
Let vu, a = 1 ... 4$ be a basis which forms a quasi-orthogonal tetrad in the spaceg,,. 

The  basis constructed in the [3, 11 and [(3, l)] classes consists of two null vectors and two 
unit space-like vectors. If the null vectors are vu and vu, the space-like vectors vu and vu 

(1) ( 2 )  (3) (4)) 
then they satisfy the following quasi-orthogonal conditions : 

(a) 

vav, = 1, VUV, = 0, 'U%, = 0 ,  = 0 ,  van, = 0 
(1)(2) (1)(3) (W4)  (1x1) ( 2 x 2 )  

vuv, = 0, vav, = 0 ,  vavu = 0, vav, = 1, vav, = 1. 
(2)(3) (2)(4) (3x4) (3x3) (4x4) 

The  signatures of the spaces are +2. 
t This research was supported in part by NASA Grant NsG-518. 
$ Latin indices denote tensor components and Greek indices tetrad components. 
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ab 

Let us define invariants g ,  h and g :  
ab ab  

Any tensor can be expressed in terms of the vectors vu and some invariants. For 
(U) 

example, a tensor of the third order A a b c  can be expressed as 
a4io 

Aabc = AV,Z'bVc.  
( U ) ( / N P )  

In particular, 
ab 

g a b  = gz 'aVh 
(u)(B) 

and 
a4 

hub = hVaZ'b 
(U)(R) 

UD a n  
where h is defined to be g g h. 

P A  
The matrix representation of huh relative to the quasi-orthogonal basis, in the space 

g a b ,  is given by .hb, where uh4 = g h. The bases in each case will consist of eigenvectors 
and generalized eigenvectors of hub in the space gab. The matrix representations will thus 
be Jordan canonical forms, a unique representation for each Segrlt case (Schouten 1954). 

Ob 

Coefficients of rotation (Eisenhart 1926) are a set of invariants y defined by 
aPP 

= v a l b v a v b . T  
a40 (a) ( B ) ( P )  

They have the property that y = 0.t 
(aP)p  

The necessary and sufficient conditions for the congruence ua to be hypersurface 
orthogonal are (a) 

v[aZ'bbjcl O* 
(U) (a) 

In  terms of rotation coefficients these become, for a null congruence such as vu 
(1) ' 

y = y = o  

and, for a space-like congruence such as va 
(3)' 

Y = 0, P , P  #33. 

131 141 

3M0l 

Sufficient conditions for null congruences such as na to be geodesic are 
( 1) 

y = y = o .  
131 141 

For a space-like congruence TY necessary and sufficient conditions for a geodesic are y = 0 
for all K. (3) a33 

Expansion 0 is defined by vula .  Let k,, be a projection operator, projecting into the 
infinitesimal 3-space orthogonal to the non-null vector vu and da = nalbvb' then shear 

The vertical is used to denote covariant differentiation and a comma will be used for partial 

$. Round brackets around two or more tensor or tetrad indices denote symmetry on the indices 

(a) ( a )  (a) 

(a) (a) ( a )  (a) '  

differentiation. 

enclosed and square brackets will be used for skew symmetry. 
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u,b is defined by 
(U) 

I n  the case of vu being null and geodetic the shear of the congruence is given by 
(a) 

3. [4] Segr& characteristic 
The canonical matrix representation ah4 of hub in the space gab is 

Here the only eigenvalue is A, repeated three times. 

chain : 
Let the base vectors for this representation be 9, ya,  tu and xu, defined by the following 

X u  = (hub-A8t)yb 
tu = (hab-A8t)xb 
Xa = (hub-A8$)tb 

(hub - A8t)xb = 0.  
xu is an eigenvector; tu, xu and ya are generalized eigenvectors of ranks 2, 3 and 4 respec- 
tively. 

T h e  relationships between these vectors will now be investigated : 

Z'X, = (hu,-A8t)tbx, = 0 
implying that xu is null; 

implying that tu and za are orthogonal; 

taz, = (hab-Asg)xbx, = 0 

tat, = (hub - A 8 t ) X b t a  = 

= (hub-A8t)ybxa = 0 

implying that tu is null. Since the spaces of interest are known not to admit real orthogonal 
null vectors this case can be excluded. 

A similar approach was taken in each of the [2,2] and [(2,2)] Segri: classes. There it 
was found, in each case, that a pair of null, mutually orthogonal eigenvectors or generalized 
eigenvectors had to exist. The  spaces of interest, being of signature +2, are known not 
to allow such vectors. Hence these classes contain no relativistic space-times having 
corresponding geodesics. 

4. [3, 11 Segr'e characteristic 
The  Jordan canonical matrix representation is 

A 1 0  

0 0 0 A + B  
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A and A + B  being distinct eigenvalues. The  base 

xu = (hab - A89)yb 
X U  = (hab-Ast)xb 
(ha, - A8t)zb = 0 

vectors form the chains 

{hub - ( A  + B)G;}tb = 0) 

za and ta are eigenvectors, xu is a generalized eigenvector of rank 2 and yQ is a generalized 
eigenvector of rank 3. 

It will now be shown that a unique quasi-orthogonal ennuple of the type discussed in 
5 2 can be constructed satisfying these eigenvector conditions : 

implying that zQ is null ; 
zaZa = (hub - A8;)xbz, = 0 

Z'X, = za(hb,-AS:)yb = 0 

implying that xu and za are orthogonal. xu must therefore be space-like. Let us normalize 
xu: X%, = 1 ; 

yax, = yyhb, - A q x ,  = X b X b  = 1. 

We shall contract the third equation of the set (4.1) with tu and the fourth with z,. 
Subtraction, if we take into account the fact that B # 0, gives tu as being orthogonal to za. 
tu must therefore be space-like and can be normalized: tat, = 1. Similarly the second and 
fourth equations of (4.1) lead to xat, = 0, and the first and fourth to yata = 0. 

y", being a generalized eigenvector of rank 3, may be used to construct the following 
general eigenvector of rank 3 : 

where p, p and y are scalars. The  remaining vectors in the chain xa and la would then be 
defined by 

Since pa is a generalized eigenvector of rank 3, xu a generalized eigenvector of rank 2 
and za an eigenvector, all the identities previously found apart from the normalized results 
will be satisfied. T o  satisfy the condition 2%, = 1, p has to be unity. tu, as defined in 
(4.1)) can be chosen within a scalar multiple. However, the condition tat, = 1 selects a 
unique scalar multiple. The freedom remaining in the selection of the basis is therefore 
given by 

9, = py" + pxa + yxa 

xu = pxa+pza, la = p x a .  

j j a  = ya + pxa + y X a  

xu = xa + pxa 

= Xa 

t a  = tu. 

The scalars p and y will now be selected uniquely, so that the two remaining require- 
ments of the quasi-orthogonal ennuple, namely j%, = 0 and j jU j ju  = 0, are satisfied: 

j j%,  = 2p +yaxa. 

jjy, = yay, - 3p2 + 2y 

We shall select the scalar p to be equal to - &yux,: 

and shall select the scalar y such that this is identically zero. Hence a unique quasi- 
orthogonal ennuple exists, which gives a Jordan matrix representation for the linear 
operator ha, on the space g a b .  
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The  scalars g and h are found: 
a@ afl 0 1 0 0  

g = gabVavb = 
U R  ( @ ( i o )  

and 
O A  0 0 

h = hubVaVb = ( o  A 0  

0 1). U R  ( U X R )  0 0 A + B  0 

These scalars, using the identities discussed in 4 2, lead to 

and 

The  condition that the spaces hab and g a b  should have corresponding geodesics is that 
there exist a scalar p such that 

2p.habIc -I- 2hubp,c + hbcp,a + &&,b = O (Eisenhart 1926). 
Here, and throughout the remainder of this work, the covariant derivativs is with respect 
to the metric ,gab. The conditions of integrability of these equations are Rabcd + &acd = 0 
(Eisenhart 1926), where &bcd is the Riemann tensor with respect to hab. These conditions 
are satisfied. 

The  components of this equation in the quasi-orthogonal basis are 

2 p  h + 2 h p + h p + h p  = 0 
U R P  U D R  R R  U ou R 

where 
h = hablcVavbVc 

U R O  (a)(R) (4) 

and 
t~ = p,aVa* 

( U )  

From the definitions 
h = h  and h = h  
U 4  (UP) uRo ( u R ) P  

we have 

h =  
U R P  

BY 0 
31P 

A +  Y 
P 4 1 ~  

Y 
1 2 P  

2Y B Y f Y  
4 2 ~  320 43.0 

B y + y  A + B  B Y + Y  

B y f y  A t 2 y  

320 43P R 4 340 130 

340 130 P 140 
Y 

12R 

(4.3) 

where 
A = A,,va and B = Baava. 
10 ( i o )  P ( 0 )  

Equations (4.3) lead to certain conditions on the rotation coefficients and on the eigenvalues. 
These conditions are listed in appendix 1. 

It is found that the congruence of xu is null, geodetic, expansion free, hypersurface 
orthogonal and shear free. Hence, by the Goldberg-Sachs (1962) theorem, all vacuum 
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metrics in this class are algebraically special. za need not be recurrent, so that the metrics 
need not be of Petrov type I11 or I Id .  The conditions on the rotation coefficients also give 
tu to be hypersurface orthogonal. Using these and other properties of the rotation coeffi- 
cients, the metrics of the spaces are now formulated. 

Let x be a parameter along the congruence xu, defined by 2, = uz,,, where E is a scalar. 
Since there is no freedom in the choice of za, the scalar cannot be transformed away. T o  
get rid of the scalar by introducing a degree of freedom in the choice of za, it is necessary 
to define the original basis with xu being of convenient scalar magnitude, not necessarily 
unity. This brings in complications which are not worth the simplification obtained in the 
form of z,. Since za is null, for a displacement along this congruence, 0 = g,, dz2, implying 
that g,, is zero. Let y be the parameter along the congruence of ya; then g,, is zero also. 
The  congruence tu is hypersurface orthogonal, space-like. Let t be the parameter along 
this congruence and let x be a parameter along the curves of xu. The vectors z,, y,, t ,  and 
x, in this coordinate system can be written 

X u  = ( V ,  o ,o ,  O), 
t u  = (0,0,  c, 01, 

Y a  = (Yl,Y2,Y3,Y4) 

xu = (x1, x2, x3, x4) 
where y1 ... y4 ,  F, ... x4 and C are as yet unknown scalars. The  line element of the space 
g a b  in this coordinate system is 

ds2 = c2 dt2 + D2 dx2 +2E dz dy+2F dz dx +2G dy dx 
where D, E, F and G are scalars. The  vector components and the metric coefficients may 
be related, using expression (4.2) for gab ,  to give 

1 
V (4.4) 1 G = O  

X, = (V,O,O,O), ya - ( -$Q2,  E,O, F - D Q )  . 
tu = ( O , O ,  C, O), xu = ( Q ,  O , O ,  0) 

Here Q is an unknown scalar. Both Q and V ,  if they exist, are unique. 
The  rotation coefficients may now be calculated. A knowledge of some of the rotation 

coefficients has already been used, of course, in the construction of the line element. 
Comparison will be made with the table of rotation coefficients to give the remaining 
information concerning the spaces. The  table of rotation coefficients based on the above 
vectors is given in appendix 2. 

An identity that can be used for simplifying some of the rotation coefficients is obtained 
from the knowledge that xu is geodesic. zalbzb being proportional to z, implies, in this 
coordinate system, that c = 0, c # 1, giving 

FE,1 - EF,, = 0 or F = 0. 
ill1 

It is found that the spaces can be represented by the following metrics: 

space gab, ds2 = C2 dt2 + D2 dx2 + 2E dz dy +2F dx dx 
spaceh,,, ds2 = 2VQdz2+C2(A+B)dt2+AD2dx2+2AEdzdy+2(AF+ VD)dzdx .  
The  conditions on the coefficients are as follows: 

F = 0 or FE,, - EF,, = 0 

v.2 = 

2A 
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82 (3 VD - 2A(QD - F)}  = 2A(Q,4 -D , i )  
E 

A and B are functions of 2: only. The  following functions cannot take the value zero: 
A, B, A +B, E, D, V ,  C .  x, y ,  t and x are labelled 1, 2, 3 and 4 coordinates, respectively. 
In  order that the signature of both the spaces be +2, it is necessary and sufficient that all 
the functions appearing in the metric coefficients be real, that A > 0, A+B > 0. 

5 .  [(3, l)] Segrh characteristic 
The Jordan canonical form is now i" ; 

O O O A  

A being the single repeated eigenvalue. The  base vectors are defined by the chains 

X U  = (ha, - A8;)yb 

za = (hab - AS;)xb 

(ha, - A S ; ) X b  = O 

(hab-AG;)tb = 0.  

The following identities are found in exactly the same manner as in 9 4: 
ZaZ, = 0 ,  Za ta  = 0 ,  xay, = 1, Z a x ,  = 0 ,  t a t ,  = 1, Xax, = 1, xata = 0.  

T o  complete the quasi-orthogonal ennuple basis, the identities yay, = 0, yat, = 0 and 
yax, = 0 are still required. If we start with an arbitrary generalized eigenvector of rank 3,  
Y Q ,  the most general transformation preserving this property is 

j j a  = pya + pxa + yza + 7] ta  

where p, p, y, and q are arbitrary scalers. 
The  remaining vectors in the chain, 9 and Za, are given by 

f fa  = pxa+p.Za 

sa = p x a .  

The  two-dimensional eigenspace allows fa, defined by f a  = Atu+ 8za, to be an eigen- 
vector. However, the restriction that f a  should have magnitude 1 causes h = 1 and 6 = 0. 
The  condition jjujja = 1 makes p = 1. All other identities are, of course, satisfied since 
4" is an eigenvector of rank 3, Za an eigenvector of rank 2 and ,Fa an eigenvector. Three 
degrees of freedom remain to construct an ennuple that satisfies the three remaining 
conditions : 

yan, = yax, + 2p * 
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Let us select the appropriate scalar p to make jjaaa = 0. 

y a i a  = yat, + 7 .  

Here we select the appropriate 77 to make jjaia = 0:  

y a y a  = yay, - 3p2 - 72 + y .  

Here again, by selecting the appropriate y,  j j a  is null. Hence the quasi-orthogonal ennuple 
can be selected as the basis in this case. Here again it is unique. The  representations of 
g a b  and ha, are as in (4.2) with B = 0. The  geodesic condition leads to the same identities 
as in the [3, 11 case. These now have to be simplified under the condition B = 0. ,il = 0, 
B = 0 need not be considered, as here the space ha, becomes two-dimensional. A # 0, 
B = 0 in the identities give p = p = p = p = 0, implying that p is constant. This 

in turn implies that A is constant. 
The  only possible non-identically zero rotation coefficients are y and 7, these being 

independent apart from the skew symmetry relationship. Hence the za congruence is 
again null, geodetic, expansion free, hypersurface orthogonal and shear free. By the 
Goldberg-Sachs theorem and the discussion in the introduction all vacuum metrics in this 
class are algebraically special. 

The  conditions on the rotation coefficients also imply that the congruence Xu is hyper- 
surface orthogonal. The  metrics are now constructed in a manner similar to those of the 
[3, 11 case. The  analogy between the two cases is used in the construction. It is found 
that the spaces can be represented by the following metrics having signatures t3: 

and 

1 2 3 4  

23a 3 2 r  

ds2 = dx2 + D2 dt2 +2E dx dy+2F dx dt 

ds2 = A dx2+ AD2 dt2 +2AE dz dy+2AF dx dt +2V dx dx. 

The conditions on the coefficients are 

D,  V and E do not vanish, D, E, F and V are real valued, A is a real positive constant and 
V is a function of x only. Here x, y ,  t and x are labelled 1, 2, 3 and 4 coordinates, respec- 
tively. The two spaces then have corresponding geodesics. 

6. Discussion 
The Segrb class having simple elementary divisors and simple eigenvalues has been 

discussed by Eisenhart (1926). Levi-Civita (1896) has discussed the Segrb class having 
simple elementary divisors with repeated eigenvalues, when the fundamental forms are 
positive definite. An extension of this work to relativistic metrics and also the investigation 
of the [2, 1, 11 class and its sub-classes still need to be carried out. It is expected that 
spaces allowing corresponding geodesics exist in these categories. Since any physically 
realistic gravitational wave would have a certain amount of shear, it would be of interest 
to find metrics other than algebraically special ones having corresponding geodesics. These 
may exist in the classes still to be considered, 
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A 
Y 3 122 

0 

- _  
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Y =  
a 4  1 

Appendix 1 
The conditions on the rotation coefficients are as follows 

0 

0 

0 

0 

A 
5 x 3  

A 
-Y 3 122 

0 
A 

- - Y  2B 123 

0 

0 

I 
Y =  

a42 

I A A 
2B 123 

Y 

Y 9 122 

0 

- _  Y -- Y 
122 

0 

-Y 0 

A A + B  A + B  
-Y -__ Y 0 Y 

A + B  
2 ~ 3  123 

- ___ 
122 

2B2 123 2B123 2B3 123 

Y 0 0 
123 

Y =  
a43 

I 

A + B  
Y O  - ___ 

3B 122 

0 0 

- Y  0 
123 

A+B 
Y 0 -__ 

3B 122 

\ 0  0 0 0 

A 
-Y 0 0 
3 122 

0 I - 3 1 x 2  2B2 
A + B  

- A1Y2 -___ 

The conditions on the eigenvalues are as follows: 

A,2 = A,4 = Bs2 = B,4 = 0 



466 G. Williams 

Appendix 2 
The following rotation coefficients are identically zero: y,  for all CI and p, by the skew 

symmetric property of rotation coefficients; y,  y ,  y ,  y ,  y,  y and rotation coefficients 

obtained from these using the skew symmetric property. 
The  non-zero rotation coefficients are as follows: 

@a8 

1 3 1 1 4 1 3 4 1 1 3 3  143 134  

V ,  2 
Y = -  

121 E 

E.3 

Q.2 F,2-E,4 

Y = -- 
231 2CE 

y = --+ 
241 E 2DE 

y = - - - - - +  V,I  QV-4 E,I (E.4-F,2)Q 
122 V2  V 2 D  E V  EVD 

E, 3 

F,2 - E,4 

Y = -- 
132 2EC 

Y =-- 
142 2ED 

D,3Q2 E,3Q(2F- QD)  F,3Q +------ 
2CEDV2 CDV2 Y = 

232 CD V 2  

+--- Y =  
342 2CDEV 2CDV CDV 

V-3 E,3 

C, 1 
Y = z  

y=-- - - - - - -  
123 VC 2EC 

233 

c.4 
y =  -- 

343 CD 

v,4 
Y = - -  

124 V D  2ED 
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+-- 
244 ’ =  DEV V D  V D  

_ _ _  

D 3  y = -. 
344 CD 
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